#MNIST数据集入门 from __future__ import print_function import tensorflow as tf
# number 1 to 10 data #use mnist data #使用这两句,会在程序储存的位置出现文件夹MINIST_data #下载MNIST数据集中的四个压缩包,并放在MINIST_data文件夹中,不要解压 #官网下载地址:http://yann.lecun.com/exdb/mnist/ from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
#define add_layer function defadd_layer(inputs, in_size, out_size, activation_function=None,): # add one more layer and return the output of this layer Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1,) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function isNone: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b,) return outputs
#define compute_accuracy function defcompute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) #output result which is the percent,this percent too high,the prediction too accurate return result
# define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 784]) # 28x28,也就是有784个数据点 ys = tf.placeholder(tf.float32, [None, 10])#有10个输出
# the error between prediction and real data #分类的话,用softmax配上cross_entropy(交叉熵) cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))# loss train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.Session() # important step # tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 if int((tf.__version__).split('.')[1]) < 12and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init)
#display the graph for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))