Fork me on GitHub

利用CNN识别图片

具体CNN的原理以及应用请看上一篇文章。废话不多说,直接上代码,看运行效果

利用CNN识别image的源代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -- coding: utf-8 --

"""
@author: victor

Convolutional Neural Network Example
Build a convolutional neural network with Tensorflow
This example is using TensorFlow layers API
see 'convolutional_network_raw' example for a raw TensorFlow
implementation with variables
"""

#from future import division,print_function,absolute_import


#Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("MNIST_data/",one_hot=False)

#import module
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

#Training parameters
learning_rate=0.001
num_steps=1000
batch_size=128

#Network parameters
num_input=784#MNIST data input(img shape:28*28)
num_classes=10#MNIST total classes(0-9 digits)
dropout=0.25#Dropout,probability to drop a unit

#Create the neural network
def conv_net(x_dict,n_classes,dropout,reuse,is_training):

#Define a scope for reusing the variables
with tf.variable_scope('ConvNet',reuse=reuse):
#tf Estimator input is a dict,in case of multiple inputs
x=x_dict['images']


#MNIST data input is a 1-D vector of 784 features(28*28 pixels)
#Reshape to match picture format [Height x Width x Channel]
#Tensor input become 4-D:[Batch Size,Height,Width,Channel]
x=tf.reshape(x,shape=[-1,28,28,1])


#Convolution Layer with 32 filters and a kernel size of 5
conv1=tf.layers.conv2d(x,32,5,activation=tf.nn.relu)

#Max Pooling(down-sampling) with strides of 2 and kernel size of 2
conv1=tf.layers.max_pooling2d(conv1,2,2)



#Convolution Layer with 64 filters and a kernel size of 3
conv2=tf.layers.conv2d(conv1,64,3,activation=tf.nn.relu)

#Max Pooling(down-sampling) with strides of 2 and kernel size of 2
conv2=tf.layers.average_pooling2d(conv2,2,2)


#Flatten the data to a 1-D vector for the fully connected layer
fc1=tf.contrib.layers.flatten(conv2)



#Fully connected layer(in tf contrib folder for now)
fc1=tf.layers.dense(fc1,1024)

#Apply Dropout(if is_training is False,dropout is not applied)
fc1=tf.layers.dropout(fc1,rate=dropout,training=is_training)

#Output layer,class prediction
out=tf.layers.dense(fc1,n_classes)

return out



#Define the model function(following Tf Estimator Template)

def model_fn(features,labels,mode):

#Build the neural network
#Because Dropout have different behavior at training and prediction time
#we need to create 2 distinct computation graphs that still share the same weights
logits_train=conv_net(features,num_classes,dropout,reuse=False,is_training=True)
logits_test=conv_net(features,num_classes,dropout,reuse=True,is_training=False)



#Predictions
pred_classes=tf.argmax(logits_test,axis=1)
pred_probas=tf.nn.softmax(logits_test)


#If prediction mode,early return
if mode==tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode,predictions=pred_classes)


#Define loss and optimizer
loss_op=tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits_train,labels=tf.cast(labels,dtype=tf.int32)))

optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op=optimizer.minimize(loss_op,global_step=tf.train.get_global_step())


#Evaluate the accuracy of the model
acc_op=tf.metrics.accuracy(labels=labels,predictions=pred_classes)


#TF Estimators requires to return a EstimatorSpec,that specify
#the different ops for training,evaluating,...
estim_specs=tf.estimator.EstimatorSpec(
mode=mode,
predictions=pred_classes,
loss=loss_op,
train_op=train_op,
eval_metric_ops={'accuracy':acc_op})

return estim_specs


#Build the Estimator
model=tf.estimator.Estimator(model_fn)



#Define the input function for training
input_fn=tf.estimator.inputs.numpy_input_fn(
x={'images':mnist.train.images},
y=mnist.train.labels,
batch_size=batch_size,
num_epochs=None,
shuffle=True)

#Train the Model
model.train(input_fn,steps=num_steps)


#Predict single images
n_images=10

#Get images from test set
test_images=mnist.test.images[:n_images]

#Prepare the input data
input_fn=tf.estimator.inputs.numpy_input_fn(
x={'images':test_images},shuffle=False)

#Use the model to predict the images class
preds=list(model.predict(input_fn))



#Display
for i in range(n_images):
plt.imshow(np.reshape(test_images[i],[28,28]),cmap='gray')
plt.show()
print('Model prediction:',preds[i])
plt.xlabel('Model prediction:'+str(preds[i]),fontsize=14)
plt.pause(0.5)

运行效果

cnn识别图片

查看Tensor board上的效果

  • Tensorboard的操作

    tensorboard

  • 利用Google Chrome查看图形化差异

loss